Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494840

RESUMO

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Assuntos
Doenças do Sistema Digestório , Doença de Parkinson , Humanos , Dopamina/metabolismo , Receptores Dopaminérgicos , Doença de Parkinson/metabolismo , Neurotransmissores
2.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398943

RESUMO

Enrichment of erythrocytes is a necessary step in the diagnosis of blood diseases. Due to the high deformability and viscosity of erythrocytes, they cannot be regarded as stable point-like solids, so the influence of their deformability on fluid dynamics must be considered. Therefore, by using the special effect of an I-shaped pillar (I-pillar) on erythrocytes, erythrocytes with different deformability can be made to produce different provisional distances in the chip, so as to achieve the separation of the two kinds of erythrocytes. In this study, a microfluidic chip was designed to conduct a control test between erythrocytes stored for a long time and fresh erythrocytes. At a specific flow rate, the different deformable erythrocytes in the chip move in different paths. Then, the influence of erythrocyte deformability on its movement trajectory was analyzed by two-dimensional finite element flow simulation. DLD sorting technology provides a new method for the sorting and enrichment of diseased erythrocytes.

3.
Photodiagnosis Photodyn Ther ; 45: 104003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38336148

RESUMO

Hyperspectral Imaging (HSI) seamlessly integrates imaging and spectroscopy, capturing both spatial and spectral data concurrently. With widespread applications in medical diagnostics, HSI serves as a noninvasive tool for gaining insights into tissue characteristics. The distinctive spectral profiles of biological tissues set HSI apart from traditional microscopy in enabling in vivo tissue analysis. Despite its potential, existing HSI techniques face challenges such as alignment issues, low light throughput, and tissue heating due to intense illumination. This study introduces an innovative HSI system featuring active sequential bandpass illumination seamlessly integrated into conventional optical instruments. The primary focus is on analyzing oxyhemoglobin and deoxyhemoglobin saturation in animal tissue samples using multivariate linear regression. This approach holds promise for enhancing noninvasive medical diagnostics. A key feature of the system, active bandpass illumination, effectively prevents tissue overheating, thereby bolstering its suitability for medical applications.


Assuntos
Imageamento Hiperespectral , Fotoquimioterapia , Animais , Saturação de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Iluminação
4.
Org Lett ; 26(7): 1376-1381, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38349071

RESUMO

We report a Cu(I)-Ph-BPE-catalyzed asymmetric vinylogous Mannich reaction of ß,γ-alkynyl-α-ketimino esters with ß,γ-unsaturated N-acylpyrazoles. In this process, the Cu(I)-Ph-BPE catalyst activates the ß,γ-alkynyl-α-ketimino ester through N,O-coordination, enabling the subsequent nucleophilic addition of a dienolate generated from the ß,γ-unsaturated N-acylpyrazole via α-position deprotonation with a catalytic amount of tertiary amine. The reactions gave useful products with very high enantioselectivities. A broad range of substrates with various substituents are tolerated in this reaction. The versatility of this method was demonstrated by a gram-scale reaction, and subsequent elaboration of the Mannich adducts was also provided.

5.
bioRxiv ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37577500

RESUMO

After ATP-actin monomers assemble filaments, the γ-phosphate is hydrolyzed from ATP within seconds and dissociates from the filament over several minutes. We used all-atom well-tempered metadynamics molecular dynamics simulations to sample the release of phosphate from filaments along with unbiased molecular dynamics simulations to study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses in an internal cavity toward a gate formed by R177 suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time interactions of R177 with other residues occludes the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly. These occluded states have not been documented in cryo-EM reconstructions.

6.
J Chem Theory Comput ; 19(23): 8987-8997, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37957028

RESUMO

Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.


Assuntos
HIV-1 , Simulação de Dinâmica Molecular , Algoritmos
7.
J Cell Mol Med ; 27(18): 2631-2642, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638698

RESUMO

Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.


Assuntos
Canais Iônicos , Fenômenos Fisiológicos , Transporte Biológico , Homeostase , Nutrientes
8.
Front Immunol ; 14: 1187890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404813

RESUMO

The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.


Assuntos
Monócitos , Canais de Potencial de Receptor Transitório , Animais , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Macrófagos , Mamíferos/metabolismo
9.
Diagnostics (Basel) ; 13(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37510133

RESUMO

Many researchers have realized the intelligent medical diagnosis of diabetic retinopathy (DR) from fundus images by using deep learning methods, including supervised contrastive learning (SupCon). However, although SupCon brings label information into the calculation of contrastive learning, it does not distinguish between augmented positives and same-label positives. As a result, we propose the concept of Angular Margin and incorporate it into SupCon to address this issue. To demonstrate the effectiveness of our strategy, we tested it on two datasets for the detection and grading of DR. To align with previous work, Accuracy, Precision, Recall, F1, and AUC were selected as evaluation metrics. Moreover, we also chose alignment and uniformity to verify the effect of representation learning and UMAP (Uniform Manifold Approximation and Projection) to visualize fundus image embeddings. In summary, DR detection achieved state-of-the-art results across all metrics, with Accuracy = 98.91, Precision = 98.93, Recall = 98.90, F1 = 98.91, and AUC = 99.80. The grading also attained state-of-the-art results in terms of Accuracy and AUC, which were 85.61 and 93.97, respectively. The experimental results demonstrate that Angular Margin is an excellent intelligent medical diagnostic algorithm, performing well in both DR detection and grading tasks.

10.
J Membr Biol ; 256(4-6): 301-316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37039840

RESUMO

For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.


Assuntos
Canais de Potencial de Receptor Transitório , Nociceptores/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Humanos
11.
J Cereb Blood Flow Metab ; 41(5): 1091-1102, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32787543

RESUMO

In patients who are successfully resuscitated after initial cardiac arrest (CA), mortality and morbidity rates are high, due to ischemia/reperfusion injury to the whole body including the nervous and immune systems. How the interactions between these two critical systems contribute to post-CA outcome remains largely unknown. Using a mouse model of CA and cardiopulmonary resuscitation (CA/CPR), we demonstrate that CA/CPR induced neuroinflammation in the brain, in particular, a marked increase in pro-inflammatory cytokines, which subsequently activated the hypothalamic-pituitary-adrenal (HPA) axis. Importantly, this activation was associated with a severe immunosuppression phenotype after CA. The phenotype was characterized by a striking reduction in size of lymphoid organs accompanied by a massive loss of immune cells and reduced immune function of splenic lymphocytes. The mechanistic link between post-CA immunosuppression and the HPA axis was substantiated, as we discovered that glucocorticoid treatment, which mimics effects of the activated HPA axis, exacerbated post-CA immunosuppression, while RU486 treatment, which suppresses its effects, significantly mitigated lymphopenia and lymphoid organ atrophy and improved CA outcome. Taken together, targeting the HPA axis could be a viable immunomodulatory therapeutic to preserve immune homeostasis after CA/CPR and thus improve prognosis of post-resuscitation CA patients.


Assuntos
Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/terapia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Reanimação Cardiopulmonar/métodos , Estudos de Casos e Controles , Citocinas/metabolismo , Glucocorticoides/administração & dosagem , Glucocorticoides/farmacologia , Parada Cardíaca/complicações , Parada Cardíaca/patologia , Homeostase/efeitos dos fármacos , Antagonistas de Hormônios/administração & dosagem , Antagonistas de Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Terapia de Imunossupressão/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/administração & dosagem , Modelos Animais , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Prognóstico , Traumatismo por Reperfusão
12.
Microbiome ; 8(1): 153, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158453

RESUMO

BACKGROUND: Chronic immune-mediated diseases are rapidly expanding and notoriously difficult to cure. Altered relatively stable intestinal microbiota configurations are associated with several of these diseases, and with a possible pre-disease condition (more susceptible to disease development) of the host-microbiota ecosystem. These observations are reminiscent of the behavior of an ecosystem with alternative stable states (different stable configurations that can exist under identical external conditions), and we recently postulated that health, pre-disease and disease represent such alternative states. Here, our aim was to examine if alternative stable states indeed exist in the intestinal ecosystem. RESULTS: Rats were exposed to varying concentrations of DSS in order to create a wide range of mildly inflammatory conditions, in a context of diet-induced low microbiota diversity. The consequences for the intestinal microbiota were traced by 16S rRNA gene profiling over time, and inflammation of the distal colon was evaluated at sacrifice, 45 days after the last DSS treatment. The results provide the first formal experimental proof for the existence of alternative stable states in the rat intestinal ecosystem, taking both microbiota and host inflammatory status into consideration. The alternative states are host-microbiota ecosystem states rather than independent and dissociated microbiota and host states, and inflammation can prompt stable state-transition. Based on these results, we propose a conceptual model providing new insights in the interplay between host inflammatory status and microbiota status. These new insights call for innovative therapeutic strategies to cure (pre-)disease. CONCLUSIONS: We provide proof of concept showing the existence of alternative stable states in the rat intestinal ecosystem. We further propose a model which, if validated in humans, will support innovative diagnosis, therapeutic strategy, and monitoring in the treatment of chronic inflammatory conditions. This model provides a strong rationale for the application of combinatorial therapeutic strategies, targeting host and microbiota rather than only one of the two in chronic immune-mediated diseases. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Intestinos/microbiologia , Animais , Sulfato de Dextrana/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Inflamação/induzido quimicamente , Inflamação/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , RNA Ribossômico 16S/genética , Ratos
13.
Artigo em Inglês | MEDLINE | ID: mdl-31057483

RESUMO

Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that affect communication and social behavior. Besides social deficits, systemic inflammation, gastrointestinal immune-related problems, and changes in the gut microbiota composition are characteristic for people with ASD. Animal models showed that these characteristics can induce ASD-associated behavior, suggesting an intimate relationship between the microbiota, gut, immune system and the brain in ASD. Multiple factors can contribute to the development of ASD, but mutations leading to enhanced activation of the mammalian target of rapamycin (mTOR) are reported frequently. Hyperactivation of mTOR leads to deficits in the communication between neurons in the brain and to immune impairments. Hence, mTOR might be a critical factor linking the gut-brain-immune axis in ASD. Pharmacological inhibition of mTOR is shown to improve ASD-associated behavior and immune functions, however, the clinical use is limited due to severe side reactions. Interestingly, studies have shown that mTOR activation can also be modified by nutritional stimuli, in particular by amino acids. Moreover, specific amino acids are demonstrated to inhibit inflammation, improve gut barrier function and to modify the microbiota composition. In this review we will discuss the gut-brain-immune axis in ASD and explore the potential of amino acids as a treatment option for ASD, either via modification of mTOR activity, the immune system or the gut microbiota composition.

14.
J Am Heart Assoc ; 7(17): e009634, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30371162

RESUMO

Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is impaired after CA , we investigated the effects of age on proteostasis-related prosurvival pathways activated after CA . Methods and Results Young (2-3 months old) and aged (21-22 months old) male C57Bl/6 mice were subjected to CA and cardiopulmonary resuscitation ( CPR ). Functional outcome and organ damage were evaluated by assessing neurologic deficits, histological features, and creatinine level. CA / CPR -related changes in small ubiquitin-like modifier conjugation, ubiquitination, and the unfolded protein response were analyzed by measuring mRNA and protein levels in the brain, kidney, and spinal cord. Thiamet-G was used to increase O-linked ß-N-acetylglucosamine modification. After CA / CPR , aged mice had trended lower survival rates, more severe tissue damage in the brain and kidney, and poorer recovery of neurologic function compared with young mice. Furthermore, small ubiquitin-like modifier conjugation, ubiquitination, unfolded protein response, and O-linked ß-N-acetylglucosamine modification were activated after CA / CPR in young mice, but their activation was impaired in aged mice. Finally, pharmacologically increasing O-linked ß-N-acetylglucosamine modification after CA improved outcome. Conclusions Results suggest that impaired activation of prosurvival pathways contributes to worse outcome after CA / CPR in aged mice because restoration of proteostasis is critical to the survival of cells stressed by ischemia. Therefore, a pharmacologic intervention that targets aging-related impairment of proteostasis-related pathways after CA / CPR may represent a promising therapeutic strategy.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Parada Cardíaca/metabolismo , Rim/metabolismo , Medula Espinal/metabolismo , Resposta a Proteínas não Dobradas , Acetilglucosamina/metabolismo , Animais , Encéfalo/patologia , Reanimação Cardiopulmonar , Parada Cardíaca/fisiopatologia , Parada Cardíaca/terapia , Rim/patologia , Camundongos , Proteostase , Recuperação de Função Fisiológica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Medula Espinal/patologia , Ubiquitinação
15.
Chemistry ; 24(43): 11220-11226, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870590

RESUMO

It is crucial to design advanced electrodes with large Li/Na-ion storage capacities for the development of next-generation battery systems. Herein, hierarchical MoS2 /C composite microspheres were constructed by facile template-free self-assembly sulfurization plus post-carbonization. Cross-linked MoS2 nanosheets and outer carbon layer are organically combined together to form composite microspheres with diameters of 400-500 nm. Due to enhanced electrical conductivity and good structural stability, the MoS2 /C composite microspheres exhibit substantially improved Li/Na-ion storage performance. Compared to unmodified MoS2 , MoS2 /C composite microspheres deliver higher Li/Na-ion storage capacity (Li+ : 1017 mA h g-1 at 100 mA g-1 and Na+ : 531 mA h g-1 at 100 mA g-1 ), as well as better rate capability (Li+ : 434 mA h g-1 at 1 Ag-1 and Na+ : 102 mA h g-1 at 1 Ag-1 ) and capacity retention (Li+ : 902 mA h g-1 after 200 cycles and Na+ : 342 mA h g-1 over 100 cycles). The superior Li/Na-ion storage performance is mainly attributed to the unique porous microsphere architecture with increased electrode/electrolyte interfaces and more diffusion paths for Li/Na ion insertion. Additionally, the carbon coating can not only improve the electronic conductivity, but also suppress the shuttle effect of polysulfides.

16.
Oncotarget ; 8(38): 62858-62867, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28968954

RESUMO

The present study aimed to identify whether CD166 can be used as a biomarker for predicting the response of nasopharyngeal carcinoma (NPC) to radiotherapy. The serum concentration of CD166 in patients with NPC were detected by enzyme-linked immunosorbent assay. The secreted level of CD166 with radioresistant NPC was significantly higher than that with radiosensitive NPC. In vitro, the CD166 positive rate in the CNE2 cell membrane was significantly lower than that in the CNE2R cell membrane. The magnetic-activated cell sorting technology was used to obtain CNE-2R-CD166(+) and CNE-2R-CD166(-) cell lines. Then radiosensitivity, cell proliferation, and apoptosis were assessed using colony formation assay, cell counting kit 8 assay (CCK-8), and flow cytometry, respectively. The radiation sensitivity ratio was 1.28, indicating that the CNE2R-CD166(-) cells had a stronger radiation sensitivity. The result of CCK-8 assay indicated that the survival fraction of CNE2R-CD166(+) cells was significantly higher than that of CNE2R-CD166(-) cells. The apoptotic rate of CNE2R-CD166(+) cells was significantly lower than that of CNE2R-CD166(-) cells. Our data demonstrate that the secreted protein CD166 may be can used as a biomarker for predicting the response of NPC to radiotherapy.

17.
Brain Behav Immun ; 59: 273-287, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27640900

RESUMO

Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista/dietoterapia , Serina-Treonina Quinases TOR/metabolismo , Animais , Comportamento Animal , Química Encefálica/efeitos dos fármacos , Suplementos Nutricionais , Hipersensibilidade Alimentar/psicologia , Asseio Animal , Histidina/uso terapêutico , Imunoglobulina E/imunologia , Relações Interpessoais , Intestino Delgado/metabolismo , Lisina/uso terapêutico , Masculino , Mastócitos , Camundongos , Hipersensibilidade a Leite/psicologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Treonina/uso terapêutico
18.
Neuropharmacology ; 97: 220-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26027949

RESUMO

Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms.


Assuntos
Hipersensibilidade a Leite/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bovinos , Quimiocina CCL2/sangue , Comportamento Compulsivo/tratamento farmacológico , Comportamento Compulsivo/fisiopatologia , Dieta , Modelos Animais de Doenças , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Imunossupressores/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C3H , Hipersensibilidade a Leite/tratamento farmacológico , Hipersensibilidade a Leite/psicologia , Complexos Multiproteicos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Comportamento Social , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia
19.
Behav Brain Res ; 261: 265-74, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333575

RESUMO

Food allergy has been suggested to contribute to the expression of psychological and psychiatric traits, including disturbed social behaviour and repetitive behaviour inherent in autism spectrum disorders (ASD). Most research in this field receives little attention, since fundamental evidence showing direct effects of food allergic immune responses on social behaviour is very limited. In the present study, we show that a food allergic reaction to cow's milk protein, induced shortly after weaning, reduced social behaviour and increased repetitive behaviour in mice. This food allergic reaction increased levels of serotonin (5-hydroxytryptamine; 5-HT) and the number of 5-HT positive cells, and decreased levels of 5-hydroxyindoleacetic acid (5-HIAA) in the intestine. Behavioural changes in food allergic mice were accompanied by reduced dopaminergic activity in the prefrontal cortex. Furthermore, neuronal activation (c-Fos expression) was increased in the prefrontal cortex and reduced in the paraventricular nucleus of the hypothalamus after exposure to a social target. We hypothesize that an intestinal allergic response regulates complex, but critical, neuroimmune interactions, thereby affecting brain circuits involved in social interaction, repetitive behaviour and cognition. Together with a genetic predisposition and multiple environmental factors, these effects of allergic immune activation may exacerbate behavioural abnormalities in patients with ASD.


Assuntos
Transtorno Autístico/etiologia , Encéfalo/metabolismo , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/patologia , Fatores Etários , Animais , Monoaminas Biogênicas/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Hipersensibilidade Alimentar/psicologia , Asseio Animal/fisiologia , Ácido Homovanílico/metabolismo , Relações Interpessoais , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C3H , Leite/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estatísticas não Paramétricas , Triptofano/metabolismo
20.
Biochem J ; 443(3): 727-34, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22313365

RESUMO

Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139, has remarkable anti-rheumatoid arthritis activity in vivo and its biosynthesis gene cluster (ste) consists of 27 ORFs (open reading frames). The present paper reports our study of the protein product encoded by ste27. Database searching reveals the homology of Ste27 with some spermidine/spermine acetyltransferases. To confirm the prediction, the ste27 gene was cloned and expressed in Escherichia coli BL21(DE3) cells and recombinant Ste27 was purified. The following enzymatic analysis revealed its ability of transferring the acetyl group from acetyl-CoA to spermidine and spermine, with spermidine being the preferred substrate. Ste27 can acetylate the N1, N4 and N8 positions on spermidine. The Km values of Ste27 were determined for spermidine and spermine, as well as for acetyl-CoA, poly-L-lysine and glucosamine 6-phosphate. Upon gene knockout, the exopolysaccharide-27m produced by the mutant strain Streptomyces sp. 139 (ste27-), compared with Ebosin, exhibited a significantly reduced binding activity to the interleukin-1 receptor. After gene complementation, the binding activity was partially restored. This demonstrated that the ste27 gene is involved in the biosynthesis of Ebosin. Molecular modelling was also carried out to predict the binding mode of Ste27 with acetyl-CoA, spermidine or spermine.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Streptomyces/enzimologia , Acetiltransferases/química , Acetiltransferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Biocatálise , Clonagem Molecular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...